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Abstract. Pulse eddy currents simulated using an integral formulation and Independent Component 

Analysis (ICA) for signal separation are used for detection of multiple defects in thick conductive 

plates. Numerical results for the eddy-currents signals, and signal separation using ICA, are shown. 

 

1. Introduction 
 

Pulse eddy currents technique is proposed as a method to detect multiple cracks in conductive materials 

with large thickness. For thin structures, Eddy Currents Testing (ECT) using harmonic mode was used 

extensively in the past for detection of cracks in steam generator (SG) tubing of pressurized water reactors 

(PWR) of nuclear power plants. Although its advantages, as high speed and reliability for the routine 

inspections, skin effect limits this method only to thin and nonmagnetic structures. Pulse eddy currents has 

multiple advantages: its rectangular pulse profile accounts for a multi-frequency analysis, the lower harmonics 

penetrating deeper in the material, while limiting the heating exposure of the coil-probe system to only the 

short duration of a signal allows an increase in the power  [1], [2]. Multiple industrial applications were 

reported, such as detection of cracks in multiple layered plates around fasteners for aeronautics industry, crack 

detection and thickness and conductivity evaluation in structural steels [3]. In the case of multiple cracks, the 

problem of composed signals is tackled by using Independent Component Analysis to decompose the original 

crack difference signals for each crack. 

 

2. Integral Formulation 

 

The proposed method is based on application of T- electric vector potential to the integral equation of eddy 

currents, like in [4].  Starting from Maxwell equations in quasi-stationary form and the constitutive 

relationship: 

JE ⋅ρ= ,                  (1) 

 

where J is the current density, E is the electrical field and ρ is the resistivity in the conductive domain Ωc. We 

suppose that the field sources motion relative to the conductive domain is slow and therefore the component 

of the induced field through motion is very small and negligible. In the laboratory frame, the electrical field is: 
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where V is the electric scalar potential and A is magnetic vector potential. The magnetic vector potential can 

be calculated using Biot-Savart formula: 
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with A0 being the magnetic vector potential due to the impressed current sources placed in the air. Only 

conductive media are meshed. The current density is expressed in terms of shape functions associated to the 

edges in the inner co-tree [5]. In order to model 2D, zero-thickness defects, from the set of inner co-tree edges 

are eliminated those edges placed in the defect surface. The procedure is equivalent to zeroing the circulation 

of scalar electric potential T on those co-tree edges [5]. All the coefficients in the system matrix are 

unchanged through time integration and, therefore, the resulting matrix system is formed and inverted only 

once. The rich harmonic components of a pulse impose adaptation of mesh size to the smallest skin depth, 

corresponding to the largest harmonic component to be taken into account [3]. 
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3. Independent Component Analysis 
 

Independent Component Analysis (ICA) is a particular case of blind signal separation, being a 

computational method to separate multivariate signals into additive subcomponents supposing mutual 

statistical independence of the non-Gaussian signals [6]. If N source signals are assumed, at least N 

observation signals are required. In our case, we will subject the same plate with defect to a series of 

excitation signals; our assumption is that the result signals have multiple components, i.e. sources: the 

excitation signal, the plate and the different defects. We will investigate the effectiveness of the ICA 

algorithm for blind separation of the composed signals of adjacent defects.  

 

4. Numerical Results and Conclusions 

 

The simulation setup for the test problem consists in a conductive plate, a pancake coil used to energize the 

specimen and a Hall sensor to pick-up the signal. The pancake coil – Hall sensor system is less sensitive to 

frequency variation than the classical auto-induction pancake used in AC testing, which in turn can be 

optimized for a single frequency; for pulse excitation, such an optimization is not possible [1][2][3]. The plate 

is 16 cm × 16 cm, with 10 mm thickness and having conductivity σ = 10
6
 S/m. Coil dimensions are inner 

radius Rmin = 2 mm, outer radius Rmax = 5 mm, axial length lz = 4 mm, liftoff z = 0.4 mm. The pickup sensor 

measures the magnetic flux density and is placed in the coil axis, at z = 0.4 mm. The coil signal used is a 70 

µs, trapezoidal shaped pulse, and with additional rise and fall intervals of 10 µs each, with amplitude Imax = 

2000 AT, and with a repetition frequency of 50 Hz. 55 time steps are simulated for a single pulse. In Fig. 1 we 

show the difference between signal with crack and signal without crack (difference signal) of z-component of 

magnetic flux density, measured at y = 0, z = 0.4 mm and three different x positions, for two 12 mm length, 

60% and 80% outer, 0-thickness defect, parallel and at 5mm distance each other. The composite signal will be 

subjected to ICA in order to separate the individual defect signals contributions. 

 
Fig. 1 Difference signals plotted against time. Defects are with zero-thickness, 12 mm long, open on outer side, 60% and 

80%, parallel, and displaced by x = 5 mm. The scan is done at x=0, x=-2.5 mm (centred over the 80% defect) and at x=2.5 

mm (centred over the 60% defect).  The signal is the z-component of magnetic flux density, at z=0.4 mm over the plate. 
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