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Reconstruction of Crack Shapes From the MFLT
Signals by Using a Rapid Forward Solver and an

Optimization Approach
Zhenmao Chen, Gabriel Preda, Ovidiu Mihalache, and Kenzo Miya

Abstract—In this paper, the reconstruction of crack shapes from
the magnetic flux leakage testing (MFLT) signals is realized by
introducing a rapid forward simulator and applying a determin-
istic optimization approach. The MFLT signals due to cracks of
different shape are calculated with an FEM-BEM code employing

method and polarization algorithm, which is accelerated by the
new rapid forward scheme. For reconstructing the crack shape, the
conjugate gradient method is applied with the gradients predicted
by using the difference technique. Both inner and outer crack are
successfully reconstructed from simulated MFLT signals that ver-
ified both the efficiency of the fast-forward scheme and the feasi-
bility of the deterministic inverse approach.

Index Terms—Deterministic methods, fast-forward scheme, in-
verse problems, nondestructive testing.

I. INTRODUCTION

SHAPE reconstruction of cracks in a structural component
of magnetic material from the magnetic flux leakage testing

(MFLT) signals is still a challenging subject because of the dif-
ficulties on the simulation of the nonlinear magnetic problem.
Based on an assumption that the magnetization in the material
has a uniform distribution, the authors of [1] have established
an inverse scheme based on a magnetic dipole model. Unfortu-
nately, this theory is not valid for MFLT with a small magne-
tizer. For treating the case with a distributed magnetization, a
neural network approach has been applied to the shape recon-
struction of cracks in [2], where measured data were used in
the training of neural networks. In [3], the gradient-descent pro-
cedure has been employed in the inversion of the crack shape
while the forward analysis is performed with the neural net-
work approach for tackling the computational burden problem
of a normal FEM code. Recently, a numerical code has been de-
veloped by the authors for simulating the static MFLT signals
based on the FEM-BEM hybrid method [4] and the polarization
approach [5]. However, this code is also difficult to be applied
to MFLT inversion because of the computational burden issue.
To overcome this difficulty, a scheme capable to reduce the nu-
merical analysis region is proposed in this paper. Based on this
scheme, one can significantly reduce the CPU time necessary
in the crack signal simulation, and further, apply it to the crack
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reconstruction. In the inverse procedure, the conjugate gradient
(CG) method [6] of deterministic strategy is applied with the
gradients calculated with the difference procedure. Numerical
results show that the CG method can give a good prediction of
the true crack shape in a few iteration steps. Even in addition
with the computational time required for the gradient calcula-
tion, the inversion can be carried out in an acceptable CPU time.

II. SCHEME OF THEFAST MFLT SIGNAL SIMULATOR

A. Introduction of the FEM–BEM Polarization Method

For a static nonlinear electromagnetic problem, the gov-
erning equations can be written as follows by transforming the
Maxwell equations with use of the magnetic vector potential
and separating out the nonlinear part (magnetization) from
the magnetic flux density [4]

in material (1)

in air (2)

where is the magnetic vector potential defined by
. The constitutive relation between the magnetization vector
and the magnetic flux density vector is as follows:

(3)

with function representing the nonlinear property of the
ferromagnetic material.

Equations (1)–(3) can be solved by using the FEM-BEM dis-
cretization and the polarization method [5], [7]. The basic idea
of the FEM–BEM hybrid method is to discretize the governing
equation in material with FEM, the equation in air with the BEM
and to couple the system equations with use of the following
boundary equations:

(4)

(5)

After discretization, on can obtain the system equations as

(6)

with being the coefficient matrices and the vector
corresponding to the exciting current.

Equation (6) needs to be solved together with the nonlinear
constitute relation (3). This typical nonlinear problem can be
solved by using the polarization method that treats the magne-
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tization term as an external source, and solving it with
a fixed-point procedure [5].

B. Fast Scheme for Predicting MFLT Signal

For an inspection object with a crack, the MFLT signal per-
turbation due to the crack can be calculated with the formula
described above by solving the flawed and unflawed fields sep-
arately. To apply this strategy to the inverse analysis, however,
a heavy computer burden is required, as a large number of for-
ward analyses must be solved during the inversion. In this part,
a fast-forward strategy is introduced for predicting the perturba-
tion of MFLT signals which enables a great reduction of CPU
time without losing numerical accuracy [8].

Referring to (1) and (2), the governing equations for an un-
flawed inspection object can be written as follows by denoting

as the magnetic vector’s potential and magnetization
vector of the unflawed material

in material (7)

in air (8)

In this case, constitute relation (3) also needs to be fulfilled.
Subtracting (7) and (8) from (1) and (2), one can obtain

in material (9)

in air (10)

where is the difference of the vector potential
and is the difference of the magnetization
vectors for cases with and without a crack.

Discretizing (9) with FEM, (10) with BEM, and coupling the
discretized equations with the boundary conditions (4) and (5),
one can obtain the discretized system equations as

(11)

where and are the coefficient matrices again. It is easy
to find that the coefficient matrices of the system (11)
are the same as those appeared in (6) if the geometry and the
material property of the inspection system are the same.

Usually, as the perturbation of the magnetic field due to a
crack is significant only at the vicinity of the crack, one does
not need to solve (9) and (10) at the whole analysis region for
(1) and (2). This characteristic gives us the possibility of greatly
reducing the computational time by choosing a smaller analysis
region. However, as are necessary in (3), the magneti-
zation distribution in the unflawed material is indispensable for
solving (11), i.e., a calculation to obtain the unflawed field data
has to be done in advance in order to take the reduced analysis
region. Fortunately, for calculating the signal perturbation due
to cracks of different shape, the unflawed magnetic field only
need to be calculated one time as it is unrelated with the crack
shapes. This feature is a key factor enabling the present strategy
to be applied to the MFLT signal calculation for cracks in up-
dating which is indispensable in the inverse analysis of both the
deterministic and the AI approaches.

Fig. 1. Parameterization of the crack shape.

C. Numerical Implementation

In practice, a MFLT signal can be rapidly calculated with the
following procedure.

Step 1) Calculate the unflawed magnetic potential, mag-
netization , and the magnetic field with a
conventional nonlinear analysis code, and storing
them into a database.

Step 2) Choose a smaller analysis region in the vicinity of
the crack and discretizing it with the FEM-BEM
strategy. In addition, inputting the database con-
structed in Step 1 and calculating at each
node through interpolation.

Step 3) Set the initial magnetization as “ ” for the
node belonging to the crack elements and “0.0” for
the other nodes.

Step 4) Solve with (11), and calculate from the ob-
tained through .

Step 5) Calculate the magnetization from the magnetic
field with use of the relation and

. For a crack element, however, setting the
magnetization as again.

Step 6) Calculate residual .
Step 7) If is less than the selected threshold error, go to

step 8. If not, jump back step 4.
Step 8) Calculate the perturbation of the magnetic flux

leakage from the perturbation of magnetization
through

.

III. SCHEME OFINVERSEANALYSIS

A. Parameterization of the Crack Shape

A crack [e.g., a stress corrosion crack (SCC)] in a structural
component usually has a very complicated geometry. However,
most of the cracks are in either the axial or the circumferential
direction, and also nearly in a planar shape for a crack with a
relative large size. As the first step to reconstruct natural crack
with MFLT signal, we take an axial artificial (EDM) crack of
planar shape with known crack opening and out-plane location
as the target of this paper. As the input signal of the inversion,
the MFLT signal scanned along the crack
line with a liftoff of 0.5 mm will be considered.

To solve this inverse problem, we suppose that we know the
area where the crack possibly exists. Fig. 1 shows a selected
region of crack plane that was subdivided intosubregions
along the crack line. The depths of the crack in each subregion
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Fig. 2. Analysis model of the MFLT system.

will be taken as the crack parameters to be
reconstructed.

B. Algorithm for Crack Shape Reconstruction

The crack parameters vector are reconstructed from the
measured MFLT signals by minimizing the objective func-
tion with use of a deterministic optimization approach. e.g.,
the CG method. In this work, the objective function is defined
as,

(12)

where, is the simulated MFLT signal with the forward
solver for a crack with a shape defined by parameter.

Following the procedure of CG method, the crack parameter
vector can be solved with the following iteration algorithm:

(13)

where

(14)

is a component of the gradient of the objective function, and
is the step length parameter which can be obtained with the

following formula:

(15)

with

(16)

The derivatives are calculated with the difference
method as

(17)

where and are calculated separately with
the forward solver. is the unit vector along direction. Usu-
ally, is chosen as the thickness of the layers subdividing the
inspected plate.

C. Some Other Speed Up Techniques

From the previous section, it is easy to see that the coefficient
matrix in (11) does not change during the nonlinear iteration
as the magnetization term is in the right hand of the equation.
This allows us to invert the matrix and store it at the first
iteration. This inversion of the matrix can be applied directly in
the later iterations.

On the other hand, as the crack parameter does not change
significantly in case of the gradient calculation, the distribution
of the magnetization of the unperturbed case can be used as
the initial values of the perturbed problem. This treatment can
reduce the number of iteration significantly for a given accuracy
level.

IV. NUMERICAL RESULTS

A. Numerical Results of the Fast-Forward Solver

The problem shown in Fig. 2 is taken as an example to vali-
date the proposed schemes. Two coils (1000 AT in each) are set
to the yoke legs to produce a large external magnetic field. The
flux leakage signals between the yoke poles are calculated (10
to 10 mm). The sizes of the yoke, plate, and the coil are given
in Fig. 2.

For calculating the database of unflawed field, the plate and
the yoke are subdivided into a mesh of 2934 8 elements
and 4 4 21 elements respectively. The total number of
the nodes is 10,000. Around 3 h of CPU time and 1.9 G of
memory are required to get one solution (VT-alpha6). A crack
of OD50% depth, 8-mm length, and a 0.5-mm opening is
taken as the crack to be detected. Three cubic regions with
different size are considered as the reduced analysis areas.
The size and the mesh division are separately: Case 1: 12
mm 20 mm 25 mm, 11 20 8 (1760) elements; Case
2: 16 mm 24 mm 25 mm, 13 22 8 (2288) elements;
and Case 3: 20 mm 28 mm 25 mm, 15 24 8 (2880)
elements. For the reduced system, the yoke and the coil are
not necessary to be considered. In Fig. 3, results of the full
system and the normal FEM–BEM code are compared with
those using the rapid forward scheme. The CPU times are,
respectively, 3 min, 5 min, and around 8 min for the three
reduced systems. From Fig. 3, one can find that the results of
the fast-forward solver approach those of the full system when
the reduced analysis region gets larger. However, even for the
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Fig. 3. Comparison of crack signals(B ) along liney = 0z = 0:5 calculated
with the full system and the reduced regions.

Fig. 4. Comparison of reconstructed and true crack shapes.

Fig. 5. Comparison of true MFL signal and those due to the crack of
reconstructed shape.

smallest block region in the three cases, the maximum error is
about 10%. These results proved that the proposed fast scheme
is acceptable from the point of views of both the calculation
speed and the analysis accuracy.

B. Numerical Results of Inverse Analysis

Fig. 4 shows an example of reconstruction results obtained
by using the inversion scheme described in Section III. The true
crack is an ID50% crack with a 0.5-mm opening and 8 mm
in length. After about ten iterations, an acceptable reconstruc-
tion result was obtained. Fig. 5 gives a comparison of the true
MFLT signals and those calculated with use of the crack in re-

Fig. 6. Comparison of the true and the reconstructed crack shape for an OD
crack.

constructed shape. Good agreement is also obtained. The total
CPU time for obtaining the results shown in Fig. 4 is about 30
min. Fig. 6 gives a comparison of the reconstruction results for
an OD crack. In this case, the input signal was used as the sim-
ulated MFLT signal of an OD 50% crack but with 10% white
noise. The opening and the length of the crack were used as 0.5
and 8 mm again. From this result, one can see that a good recon-
struction result can be obtained, even for a noise-polluted signal
and an OD crack.

V. CONCLUSION

In this paper, a scheme for fast-forward simulation of the
MFLT signals is proposed and was applied to the reconstruc-
tion of the crack shape with use of a deterministic optimiza-
tion approach. The numerical results show that the fast-forward
solver has both high accuracy and high simulation speed. It is
also found that the inversion of the noise-polluted simulation
signals can be performed by the deterministic approach in an ac-
ceptable computational time, which proved the validity and the
efficiency of the inverse scheme using the fast-forward solver.
As a next work, the validation of the proposed method in the
analysis of the experimental data will be performed in the near
future.
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