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Polarization Method for Static Fields

Florea |. Hantila, Gabriel Preda, and Mihai Vasiliu

Abstract—An overview of the polarization method is presented. material media, where the Newton—Raphson scheme can not be
The method can by applied for different regimes of the electromag- ysed, the polarization method is applicable [5].
netic field as well as for electric circuits. Criteria for the choice of
the permeability are proposed, so that the iterative scheme leads
to a Picard—Banach fixed point procedure. The errors are evalu- II. EQUATIONS OF THEMAGNETIC FIELD
a]’Eed. An efficient overellaxa’[ir(])ndmethodI is p(;esenged. The modaﬂty Let 2 be a domain and$? its boundary. Irf2 the magnetic
of using FEM numerical method is analyzed in order to ensure the e : ; .
convergence of the method. field verifies the following equations:

Index Terms—Finite elements, fixed point, magnetic field, non- VxH=J 1)
linear media.
VB =0 2
I. INTRODUCTION H = F(B) ()
WO IMPORTANT iterative schemes can be used for o, jinear functioni - L*(Q) — L*(Q) refers to the do-
solving the nonlinear equatio#’(z) = 0. The sim-

plest one seems to be the Picard—Banach scheme that Iearg}ﬁ!sns with ferromagnetic bodies and permanent magnets. Usu-

to the sequencer™1) = g — pl (™) = Gz™). of)t/htgz (rﬁrl]ztiirc;an—H is locally defined in almost all point®
If the function F' is Lipschitzian and uniform monotone, '

then the function is a contraction and the Picard—Banach H(P) = f(P, B(P)) (4)
sequence leads to the fixed point of the functi@nthat is

also the solution of the equatiai(z) = 0. This procedure If the function f is Lipschitzian:

was proposed for the first time, in electrical engineering, by y " y " PR
Katzenelson and Seitelman [1] for nodal analysis of resistive [f(BY) =SB <AP)B - B7|, (B, B
electric circuits. Unfortunately, the method proposed in [I3nd uniform monotone:

did not have success because the contraction factor is very

close to unit and the convergence of the iterative proceduté(B’) — f(B"))(B'— B") > \(P)(B' — B")?, (V)B', B”

is very slow. The most used scheme for solving the equatlonhereA(P) < AprandA(P) > A, > 0in Q, then the function

F(z) = 0 seems to be Newton-Raphson method that leads is Lipschitzian and uniform monotone. For example, in an
the sequencer ) = z() — [(dF/dz()]|~ F(z(™). The b ; ) ' pie,

o isotropic medium we have:
conditions that ensure the convergence of the Newton—Raphson

sequence imply bounds fdtdF /dz)]~* and [(d2F/dz?)]. |fF(B) — f(B")]

Almost always they can not be emphasized. Very often the AP) = e & B -B" Ymax;
Newton—Raphson method must be supplemented by underre- ’ ) .

laxation procedures to avoid troubles. However we must admit AP) = i f(B) - JB)| _
that the Newton—Raphson method is the most efficient one for B,B" |B' —B"| m

solving the equatiod”(x) = 0, when it is convergent.

The Picard—Banach fixed point procedure was proposed for
solving magnetic field problems in 1975 [2]. The magnetic po-
larizationZ is nonlinear related to the magnetic flux dengty ~ Relation (3) is replaced by:
The magnetic field is solved in a linearized medium for which B=uH+1 )
B = uH + I. By choosing an optimum permeability such
that the smallest contraction factor will result [3] and an ovegvhere the nonlinearity is hidden [4] in the polarizatibin
relaxation procedure [4], the convergence of the polarization R R
method is significantly improved. Important advantages result I=B-uF(B)=G(B) (6)
in comparison with the Newton—Raphson method. The method.l.he permeability, may be chosen so that the functiéh
can be applied also for nonlined#—J constitutive relations defi . . o

R . . . efined by relation (6) is a contraction:

and for electric circuits having nonlinear resistors. In hysteretic

Ill. THE POLARIZATION METHOD

IG(B") - &(B")|. < 6|B"-B"|., ()B', B”
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1 — (An/A)? and it is obtained fop: = /A%, Thiscon-  We can choose so that@ is a contraction. For example, in
traction factor is very close to unit (consider, for example, a fethe case of an isotropic media we have< 2v,,;,, hamely
romagnetic medium having = 1/p0 andA = 1/1000p0 for ;i > pnax/2. The functionM — H = H(M) is nonexpansive
which the smallest contraction factor is 0.999 999). Other proce-

dures for choosing the permeabiljtyare more convenient [4]. HISI(M’) —H(M")
In the case of an isotropic media we can choose in any point

1(P) < 2pmin(P), so that the functio? is a contraction. The  The iterative scheme corrects the magnetizatidnas an

I3

< HM/ - M
m

contraction facto# is: H-function. Itis also a Picard—Bangch fi>/<ed point procedure to
find the fixed point of the functio® = G o H. Th/erefore:
6 = SupMax(1 — j(P)/pmax(P), 1(P)/pmin(P) — 1)]. Theorem 2: ;. can be chosen so that the functi@nis a con-
Pcs[z)[ ( &)/ B, 1B/ &) ) traction and then the Polarization Method usi#fycorrection

_ _ is convergent
Since pimin > po, We can replace the nonlinear Note The choicg: = 1o does not ensure the contractivity of

medium by a linear one having the permeability Ofyo fnctioné¥ and the convergence of thi-correction itera-
the vacuum. In this casé = 1 — puo/pa, Where tive method

fy = SUPpeq fmax(P). The smallest value 0(1;9_ IS A hybrid scheme may be useH-correction is done in a re-
cs)gtg}ﬁg(j(l%bglr:{(}af’; i‘“&i’j(Pz%“ﬁEP) EFPL)LSH/i;(P)) anditis gionQ andB-correction is performed in the retz
opt — min max .
C. Errors

A. The lterative Method The error in comparison with the exact solutioB*, H™)

The algorithm is as follows: can be easily evaluated for n-iteration. We have
a) An arbitrary valuel©) is given 1
b) The magnetic fieldB™, H™) which verifies equations HB* -BM|| < 1-4 HAI(") (7
Vx H™ = J,vB™ =0, B™ = ,H™ 4 1" js v B v
computed At each iteration the magnetic field("), H) verifies re-
c) I is corrected with relation (8)[™) = G(B™)); Step lations (1) and (2). The error is given only by the constitutive
b) and c) are repeated until relation F;
) _ gt — (n)
HAIm) — H1<n> _ (-1 HH rB )HH - HAI v ®

5 The error forH can be evaluated by the relation:
= / v (I(") — I("fl)) dQ < g,
Q2 HH* —HW

wheree is an imposed errar

For anyl we have one and only one fiel® who verifies )
(1), (2) and (5) [6]. The functiod — B = B(I) is non- /
expansive:|B(I') — B(I")|, < |[I' — I"||,. Indeed, let Qi
(B, H'), (B", H") be two fields having the same boundary
conditions, the same current densitieand polarizatiod” and
I", respectively. The differendeB,, H,) of these fields veri-
fies relationV x H, = 0, VB = 0 and satisfies null boundary D. The Overrelaxation

conditions. Therefore it verifies the relatioB,, H;) = 0. L o
Taking into account the relatioHy = (B, — 1) it results: The main disadvantage of the polarization is its slow con-
IBa|2 = (Bg, I),. Hence,|By||2 < ||I4||2. Because the vergent speed. An important improvement can be obtained

function G is contractive, the above iteration scheme is & Overrelaxation. Fro?1) relations (7), (8), it results that for
Picard—Banach fixed point procedure to find the fixed point d’:;ksmalle[ vaLg_el of A1 Hk’f the errors becorrkjes sn;illler. If
the functionW = G o B. 1™ = wia*D), thenr! )A = 1% 4 ,@® — D)
Theorem 1: ;« may be chosen so that the functiGris a con- 1S Sought so thab(w) = W (I®)) — I“f’ll,% is as small as
traction and then the Polarization Method usifjcorrection POSSible [4]. The numerical overrelaxation procedure has the
is convergent following steps:
1)

B. TheH-Correction B® — (I(k—l)) ;

1
<~ |larm™
<15

1
In free space?,;, we have:

0
24/1—-86

This relation is much more convenient in the case of the con-
traction factord) very close to unit.

AT

y (B* _ B<">)2 a0 <

v

A dual formulation may be used for the treatment of
the nonlinearity. Instead of relations (5) and (6), we have: 2)
H = vB — M. Here the nonlinearity is hidden in the magneti-

zation termM: M = H — uf ' (H) = & (H). "=a (B(k)) ;
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3) A (L
k+1) _ =Y.
B = B (1V); L f
4)
~ 2
h1) = ||G (B(k+1)) O

and if h(1) < « wheree is fixed, we stop the iteration, I », H

otherwise =T
5) Bm '~_‘.- Lm”

AT®) — (R _I(k-l-l)7 ABG*+L — gk+l) _ pk)
6) The solving of the equation:

1, . [dG (1) ) L* B

k y/ k .
B®+wABEHD Fig. 1.

& (BY +waB ) - (1479 +war®) >
in the decomposition of the polarizatidhin the spaceg:.L’
=0; (9) andL” [8]. From relation (11) it results that the solving of the

(k41) _ Py (k+1) magnetic field problemB, H) consists in the decomposition
NI =GB ,+ waB ! ),goto]) ) .. of the polarizatiorI in its orthogonal componeni8 and—u.H
B and I are numerically defined by the values in a finit

. o ?Fig. 1). This is the same with the minimization of the distance
number of subdomains. Because the funci@rs generated 2(X) = ||I — X|[2, or of the functional

by the local functiony, it results thai? and (dG/dB) can be

easily calculated. Equation (9) is solved by the secant method, F(X)=-2(, X),+ |1 X|? (12)
a number of 3-5 iterations being enough. Using this overrelax- Y ) ) ,
ation procedure, Chiampi [7] reported a significant increase #the space.”, when we obtainX’ = B or In the space.L,
the convergence speed, especially for the first part of the ite¥d?€n we obtainX’ = —u.H. WhenX € nl’, we can use the

tion scheme. The overrelaxation factarhiave values between formulation in scalar potentiaX = — Ve, with the boundary
1.2 and 50. condition® = 0 on the surfaces’. WhenX € L”, we can

use the formulation in vector potentiXl] = V x A, with the

IV. FEM SOLVING OF THE LINEAR FIELD PROBLEM boundary conditiom; = 0 on 5. _ _ _
In FEM the minimization of the functional (12) is done in

For each iteration we have to calculate the magnetic fiejghiie subspacd” of L” (Fig. 1) or in subspacs’, of ;L. The
(Br, Hr) which verifies the equationsV x Hr = J, componens,, of the polarizatior on the finite subspack’, is
VBr = p, Br = pHr+Ir. We can obtain easily a magnetiGe same as the componentibn this subspace. Therefore the
field (B;, H,)sothatv xH; = J andVB; = p (Forexample, rgp numerical computation of the approximate solutiBp

using Biot-Savart-Laplace and Coulomb formulae.) Also weqits as a composed functiéh, o B where P, (B) = B..

can build a magnetic field® 1, H 1) havingV x H, = 0and  rgpm numerical scheme of the polarization method is:
VB, = 0and the boundary conditiod$, s = H,7 — H,, and

B4 = B,r— B, (For example using a scalar potential . 0 B g P, g G e
and a vector potential faB 4). The magnetic fieldsB., H,) X X ¢
and 3., H ) do not have any constitutive restrictions. It reBecauseP, and B are nonexpansive, the above method

Decomposition of the polarization

main to compute the magnetic field, H) = (Br, Hr) — leads to the Picard-Banach sequence of the contractive func-
(Bs, H,) — (B4, H 1) having zero boundary conditions andion G o P, o B. It results
zero sources. It verifies the equations: Theorem 3: If the polarizatiod is corrected byB and the

functional (12) is minimized in a subspace with restriction
VX = 0, then the numerical approximation of the polarization
wherel = I+ B, + B — u(H, + H ). Let L’ be the space Method is convergent o

of the fieldsH which have the boundary conditidii, = 0 on The dual numerical scheme of ti#e-corrected polarization
the surfaces’. Let I be the space of the field8 which have Method is

the boundary conditio®,, = 0 on the surfaces”. We have

VxH=0, VB=0, B+(—pH)=1 (10)

o e H gy Pe 7 Gy

(B, HY = (B, uH), = 0. (11) . .
where the componentHs of H on a finite subspace is

Hence it results thaf/, L” are orthogonal inL*(Q) and Hs = Ps(H).
pL’, L are orthogonal i.2(£2). From relation (10) it results ~ Theorem 4: If the magnetizatiald is corrected byH and
that the solving of the magnetic field proble®,(H) consists the functional (12) is minimized in a subspace with restriction
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V x X = 0, then the numerical approximation of the polarizasourcess we solve the circuit and after we correct the sources

tion method is convergent

V. EbDY CURRENT PROBLEMS

We consider conducting ferromagnetic bodigsmoving in
the air regiort}, with a given speeé [9]-[12]. For each itera-
tion, we have to solve the following set of equation:

in Q:
oB™
VxEW=-""_—; VxH"™ =J";
ot
vB™ =0; J™ =oEM™;
B :uH(") +I("_1);
in Qq:

VxH™ =Jy; VB™ =0; B™ =, H™,

by the functiong [13]. For Lipschitzian and uniform monotone
function f, the reasoning is similar to those for the magnetic
static fields. Sometimes, for resistive circuits, we can have only
Lipschitzian resistors. For circuits in the transient regime also
we can have only Lipschitzian resistors if the voltage controlled
ports are connected in parallel with a capacitor and the current
controlled ports are connected in series with an inductor.

VIlI. CONCLUSIONS

The polarization method is a Picard—Banach fixed point pro-
cedure. Nonlinear medium is replaced with a linear one, where
the polarization is corrected by the flux density or magnetic
field. So the magnetic permeability is the same for each iter-
ation and therefore the matrix of the equation system may be
computed only one time, before the beginning of the iterations.
If a homogeneous medium is chosen, then the Green function
may be used [for exampld /47+) for unbounded spacg?].

where the current density, is imposed. The equations areThe convergence speed may be increased by an overrelaxation

written in the local frame of the bodies. For ahyve have one
and only one field3 that verifies the above equations.
The functionl — B = B(I) is nonexpansive [12]:

|Bu» - B

<,

where

t
(u, v} = / / wwdQdr  and{u, v), = (u, vv).
o Ja

VI. OTHER APPLICATIONS OF THEPICARD—BANACH SCHEME
A. NonlinearE-J Relation

scheme. The errors in comparison with exact solution may be
easily evaluated. The FEM solving of the linear problem keeps
the convergence of the polarization method.
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