
672 IEEE TRANSACTIONS ON MAGNETICS, VOL. 36, NO. 4, JULY 2000

Polarization Method for Static Fields
Florea I. Hantila, Gabriel Preda, and Mihai Vasiliu

Abstract—An overview of the polarization method is presented.
The method can by applied for different regimes of the electromag-
netic field as well as for electric circuits. Criteria for the choice of
the permeability are proposed, so that the iterative scheme leads
to a Picard–Banach fixed point procedure. The errors are evalu-
ated. An efficient overelaxation method is presented. The modality
of using FEM numerical method is analyzed in order to ensure the
convergence of the method.

Index Terms—Finite elements, fixed point, magnetic field, non-
linear media.

I. INTRODUCTION

T WO IMPORTANT iterative schemes can be used for
solving the nonlinear equation . The sim-

plest one seems to be the Picard–Banach scheme that leads
to the sequence: .
If the function is Lipschitzian and uniform monotone,
then the function is a contraction and the Picard–Banach
sequence leads to the fixed point of the functionthat is
also the solution of the equation . This procedure
was proposed for the first time, in electrical engineering, by
Katzenelson and Seitelman [1] for nodal analysis of resistive
electric circuits. Unfortunately, the method proposed in [1]
did not have success because the contraction factor is very
close to unit and the convergence of the iterative procedure
is very slow. The most used scheme for solving the equation

seems to be Newton–Raphson method that leads to
the sequence: . The
conditions that ensure the convergence of the Newton–Raphson
sequence imply bounds for and .
Almost always they can not be emphasized. Very often the
Newton–Raphson method must be supplemented by underre-
laxation procedures to avoid troubles. However we must admit
that the Newton–Raphson method is the most efficient one for
solving the equation , when it is convergent.

The Picard–Banach fixed point procedure was proposed for
solving magnetic field problems in 1975 [2]. The magnetic po-
larization is nonlinear related to the magnetic flux density.
The magnetic field is solved in a linearized medium for which

. By choosing an optimum permeability such
that the smallest contraction factor will result [3] and an over-
relaxation procedure [4], the convergence of the polarization
method is significantly improved. Important advantages result
in comparison with the Newton–Raphson method. The method
can be applied also for nonlinear– constitutive relations
and for electric circuits having nonlinear resistors. In hysteretic
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material media, where the Newton–Raphson scheme can not be
used, the polarization method is applicable [5].

II. EQUATIONS OF THEMAGNETIC FIELD

Let be a domain and its boundary. In the magnetic
field verifies the following equations:

(1)

(2)

(3)

Non-linear function refers to the do-
mains with ferromagnetic bodies and permanent magnets. Usu-
ally the relation – is locally defined in almost all points
of the domain .

(4)

If the function is Lipschitzian:

and uniform monotone:

where and in , then the function
is Lipschitzian and uniform monotone. For example, in an

isotropic medium we have:

III. T HE POLARIZATION METHOD

Relation (3) is replaced by:

(5)

where the nonlinearity is hidden [4] in the polarization:

(6)

The permeability may be chosen so that the function
defined by relation (6) is a contraction:

-

where , , and
. For , we have

. The smallest value of the contraction factoris
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and it is obtained for . This con-
traction factor is very close to unit (consider, for example, a fer-
romagnetic medium having and for
which the smallest contraction factor is 0.999 999). Other proce-
dures for choosing the permeabilityare more convenient [4].
In the case of an isotropic media we can choose in any point

, so that the function is a contraction. The
contraction factor is:

Sup Max

Since , we can replace the nonlinear
medium by a linear one having the permeability of
the vacuum. In this case , where

Sup . The smallest value of is
Sup and it is
obtained for .

A. The Iterative Method

The algorithm is as follows:

a) An arbitrary value is given;
b) The magnetic field which verifies equations:

, , is
computed;

c) is corrected with relation (6): ; Step
b) and c) are repeated until:

where is an imposed error.

For any we have one and only one field who verifies
(1), (2) and (5) [6]. The function is non-
expansive: . Indeed, let
( be two fields having the same boundary
conditions, the same current densitiesand polarization and

, respectively. The difference of these fields veri-
fies relation , and satisfies null boundary
conditions. Therefore it verifies the relation: .
Taking into account the relation it results:

. Hence, . Because the
function is contractive, the above iteration scheme is a
Picard–Banach fixed point procedure to find the fixed point of
the function .

Theorem 1: may be chosen so that the functionis a con-
traction and then the Polarization Method using-correction
is convergent.

B. The -Correction

A dual formulation may be used for the treatment of
the nonlinearity. Instead of relations (5) and (6), we have:

. Here the nonlinearity is hidden in the magneti-
zation term : .

We can choose so that is a contraction. For example, in
the case of an isotropic media we have , namely

. The function is nonexpansive

The iterative scheme corrects the magnetizationas an
-function. It is also a Picard–Banach fixed point procedure to

find the fixed point of the function . Therefore:
Theorem 2: can be chosen so that the functionis a con-

traction and then the Polarization Method using-correction
is convergent.

Note. The choice does not ensure the contractivity of
the function and the convergence of the-correction itera-
tive method.

A hybrid scheme may be used:-correction is done in a re-
gion and -correction is performed in the rest

C. Errors

The error in comparison with the exact solution ( )
can be easily evaluated for n-iteration. We have

(7)

At each iteration the magnetic field ( ) verifies re-
lations (1) and (2). The error is given only by the constitutive
relation :

(8)

The error for can be evaluated by the relation:

In free space we have:

This relation is much more convenient in the case of the con-
traction factors very close to unit.

D. The Overrelaxation

The main disadvantage of the polarization is its slow con-
vergent speed. An important improvement can be obtained
by overrelaxation. From relations (7), (8), it results that for
a smaller value of the errors becomes smaller. If

, then
is sought so that is as small as
possible [4]. The numerical overrelaxation procedure has the
following steps:

1)

2)
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3)

4)

and if where is fixed, we stop the iteration,
otherwise:

5)

6) The solving of the equation:

(9)

7) , go to 1)
and are numerically defined by the values in a finite

number of subdomains. Because the functionis generated
by the local function , it results that and can be
easily calculated. Equation (9) is solved by the secant method,
a number of 3–5 iterations being enough. Using this overrelax-
ation procedure, Chiampi [7] reported a significant increase of
the convergence speed, especially for the first part of the itera-
tion scheme. The overrelaxation factorshave values between
1, 2 and 50.

IV. FEM SOLVING OF THE LINEAR FIELD PROBLEM

For each iteration we have to calculate the magnetic field
( ) which verifies the equations: ,

, . We can obtain easily a magnetic
field ( ) so that and (For example,
using Biot–Savart–Laplace and Coulomb formulae.) Also we
can build a magnetic field ( ) having and

and the boundary conditions and
(For example using a scalar potential for

and a vector potential for ). The magnetic fields ( )
and ( ) do not have any constitutive restrictions. It re-
main to compute the magnetic field

having zero boundary conditions and
zero sources. It verifies the equations:

(10)

where . Let be the space
of the fields which have the boundary condition on
the surface . Let be the space of the fields which have
the boundary condition on the surface . We have

(11)

Hence it results that are orthogonal in and
are orthogonal in . From relation (10) it results

that the solving of the magnetic field problem ( ) consists

Fig. 1. Decomposition of the polarization

in the decomposition of the polarizationin the spaces
and [8]. From relation (11) it results that the solving of the
magnetic field problem ( ) consists in the decomposition
of the polarization in its orthogonal components and
(Fig. 1). This is the same with the minimization of the distance

, or of the functional

(12)

in the space , when we obtain or in the space ,
when we obtain . When , we can use the
formulation in scalar potential , with the boundary
condition on the surface . When , we can
use the formulation in vector potential , with the
boundary condition on .

In FEM the minimization of the functional (12) is done in
finite subspace of (Fig. 1) or in subspace of . The
component of the polarization on the finite subspace is
the same as the component ofon this subspace. Therefore the
FEM numerical computation of the approximate solution
results as a composed function where .
FEM numerical scheme of the polarization method is:

Because and are nonexpansive, the above method
leads to the Picard–Banach sequence of the contractive func-
tion . It results

Theorem 3: If the polarization is corrected by and the
functional (12) is minimized in a subspace with restriction

, then the numerical approximation of the polarization
method is convergent.

The dual numerical scheme of the-corrected polarization
method is

where the component of on a finite subspace is
.

Theorem 4: If the magnetization is corrected by and
the functional (12) is minimized in a subspace with restriction
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, then the numerical approximation of the polariza-
tion method is convergent.

V. EDDY CURRENT PROBLEMS

We consider conducting ferromagnetic bodiesmoving in
the air region with a given speed [9]–[12]. For each itera-
tion, we have to solve the following set of equation:

in :

in :

where the current density is imposed. The equations are
written in the local frame of the bodies. For anywe have one
and only one field that verifies the above equations.

The function is nonexpansive [12]:

where

and

VI. OTHER APPLICATIONS OF THEPICARD–BANACH SCHEME

A. Nonlinear – Relation

For nonlinear conducting bodies we replace the non-
linear relation by where

. For each iteration we have to solve
the electromagnetic field equation: ;

; ;
; . For any we

have one and only one field which verifies the above equa-
tions. It can be proved that the function is
nonexpansive. The field of the imposed sourcesis iteratively
corrected by : . If the function is Lips-
chitzian and uniform monotone, then we can chooseso that
the function is a contraction.

Remark: It can be proved that even if the functionis only
Lipschitzian we can chooseand the time interval so that
the composed function (not ) is a contraction.

B. Electric Circuits with Nonlinear Resistors

The nonlinear current–voltage relations can be re-
placed by where . For given

sources we solve the circuit and after we correct the sources
by the function [13]. For Lipschitzian and uniform monotone
function , the reasoning is similar to those for the magnetic
static fields. Sometimes, for resistive circuits, we can have only
Lipschitzian resistors. For circuits in the transient regime also
we can have only Lipschitzian resistors if the voltage controlled
ports are connected in parallel with a capacitor and the current
controlled ports are connected in series with an inductor.

VII. CONCLUSIONS

The polarization method is a Picard–Banach fixed point pro-
cedure. Nonlinear medium is replaced with a linear one, where
the polarization is corrected by the flux density or magnetic
field. So the magnetic permeability is the same for each iter-
ation and therefore the matrix of the equation system may be
computed only one time, before the beginning of the iterations.
If a homogeneous medium is chosen, then the Green function
may be used [for example for unbounded space ].
The convergence speed may be increased by an overrelaxation
scheme. The errors in comparison with exact solution may be
easily evaluated. The FEM solving of the linear problem keeps
the convergence of the polarization method.
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