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Abstract

A neural network mapping approach has been proposed
for the inversion problem in eddy-current testing (ECT).
The use of a Principal Component Analysis (PCA) data
transformation step, a data fragmentation technique,
jittering, and of a data fusion approach proved to be
instrumental auxiliary tools that support the basic training
algorithm in coping with the strong ill-posedness of the
inversion problem. The present paper reports on the
further improvements brought by a new, randomly
generated database used for the training set, proposed for
the reconstruction of crack shape and conductivity
distribution. Good results were obtained for four levels of
conductivity and non-connected crack shapes even in the
presence of high noise levels.

1. Introduction

Eddy current testing (ECT) technique, despite its major
benefits (e.g. low costs, high checking speed and
robustness, sensitivity to large classes of defects) has failed
to be generally accepted for industrial application. This is
due to the difficulties added for the solution of the
inversion problem i.e. size and shape of the detected
cracks. Inversions of ECT signals to reconstruct crack
shapes has mainly been based on analysis of the
underlying process in so called model-based methods [1-
3]. Problems related to complexity, or low speed,
encountered in the model-based inversion approaches have
suggested that model-free (empirical) methods could
represent a good candidate to be used in hybrid or
standalone schemes. Model-free methods employ rules
and/or maps, determined from the whole past experience
and the longer and better this accumulated knowledge, the
greater the accuracy and robustness achieved. The most
successful regression methods for extracting these maps
are based on neural network (NN) application [4-7].  Our
option, presented in previous papers [8[10][11] was for a
NN architecture whose training algorithm is able to cope
efficiently with some inherent difficulties encountered to

other algorithms. The present work reports further
improvements brought by the algorithm to generate the
database for the training set and the successfully
reconstruction of cracks having four levels of conductivity
values.

2. Outline of the General Mapping Algorithm

The inverse mapping algorithm was extensively presented
elsewhere [8][10][11]. The combination of a special
training algorithm with incremental learning [9] and the
statistical analysis and transformation of the input data –
by Principal Component Analysis (PCA), together with a
special data fragmentation technique, jittering and a data
fusion approach ensured the optimality of the regression
procedure. The network contains a single hidden layer, and
additional direct connections between inputs and outputs to
account for the mapping linearities. The training starts with
only one hidden node, and for each training epoch a new
node is created, the new input-hidden connections receive
random weights and the rest of the weights are solved by a
least-square minimization using singular value
decomposition. This association allows the parameters
(weights) of the NN to comply with increasingly detailed
features of the map. The mapping starts from discovering
the rough features of the input-output relationship by a
hypersurface in few dimensions, and pursues by increasing
the attention paid to details by gradually extending the
dimensionality of this hypersurface. This process continues
until the quality of the representation is optimal, i.e., a
necessary-and-sufficient number of parameters describe
without redundancy the interpolation, by giving
appropriate relevance to each input. As we mentioned, the
training algorithm of the employed NN implies least-
squares solutions of an over-determined equation system at
each iteration (training epoch):
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where A, B represent the input, and output training sets,
respectively, f1 and f2, the nonlinear activation functions



for the hidden and output nodes, Wih is a randomly
generated, fixed coefficient matrix, and Wio, Who are the
matrices containing the unknowns of the problem, i.e., the
input-output and the hidden-output interconnection
weights, respectively. Also, a new regularizing feature was
introduced, i.e., a `cooling' procedure for the hidden nodes'
nonlinearity. The steepness of f1 is increased progressively
-- by a logarithm-based function -- while training the
network, allowing the regression to `discover' first the
rough features of the error surface, and to locate smoothly
its details.

Fig. 1 Data flow through the basic inversion algorithm.

Fig. 1 depicts the data flow through this basic mapping
algorithm. The I-O pairs of the initial database are
partitioned into training, validation and verification sets.
The `PCA' and `NN' modules are presented with the
training data and issue the two files for later use. The PCA
file is used for the transformation of both the validation,
and verification sets. The validation set is used only to
control the training optimality, by monitoring the currently
achieved estimation error. The reconstructions are
conducted on the verification set, and, if available, the
corresponding `correct' shapes are compared with the
estimated ones. The latter set is the equivalent to the in situ
scan data (the `fresh' data). At this stage, the previously
recorded files are employed, and only elementary
operations are necessary for data transformation and
propagation through the trained network. These two steps
are very fast and can be performed in real-time with small
computation requirements during the actual testing. Being
based on learning an input-output mapping from a set of
examples (the training set) or fitting in a least-squares
sense a hypersurface to this set in view of acquiring good
generalization properties in unpopulated points, the whole
procedure is equivalent to a statistical regression. The
shifting aperture technique roles are to reduce the ill-
posedness of the map, to minimize the dimension of the
mapping problem and to multiply the number of available
cases. The rationale of the method was extensively
presented elsewhere [11]. Fig. 2 depicts the shifting
aperture mapping approach: each aperture from an initial

full-scan is mapped onto a corresponding object window,
and both are simultaneously shifted. Obviously, the
optimal openings and shifting step of these scan and object
fragments will depend on the frequency, scanning step,
probe construction and material parameters. It was found
[10,11] that equal openings -- of about the same spatial
extent as the probe's active area -- and a shifting step equal
to the scanning step ensure a good conditioning for the
problem. After cutting and shifting the raw full-scans, the
resulting database will be sent to the basic inversion
algorithm -- as was depicted in Fig. 1 -- to pass through the
PCA, and NN modules.

Fig 2. Shifting aperture strategy for flaw reconstruction

3. The database for the training set

The reconstruction quality of the trained network relies not
only on the optimality of the training algorithm but also on
the generality of the primary input data used for the
training set.  The data provided to the network are
expected to contain enough useful information about the
“points” of the regressed ‘hypersurface’. It should be noted
that the resulted map has to be accurate only in a critical
region of the problem space. Theories of fracture
mechanics and results of experimental tests can be
combined for deciding the critical dimensions and shape
classes of propagating cracks. Based on these results, a
minimal database can be constructed.

The present study shows that an improved generation
algorithm for the training data could significantly enhance
the mapping potential. The algorithm aims to acquire two
different goals: first, to uniformly populate the parameter
space of the problem with the elements of the database
and, second, to reduce the generated shapes to a restrained
crack shape class. For the first goal, the random character
of the generation and for the second, some imposed



constraints on the randomly generated parameters of the
crack are effective. All cracks were supposed to be inner
and superficial or having at least a zero-conductivity (air)
area on the surface. The randomly generated parameters
are the total depth of the crack beneath each scan point, the
depth of the zone with air of the crack and the value of the
conductivity in the crack cells, thresholded at four imposed
levels.

In the first stage, 600 longitudinal scans were simulated
along the same number of randomly shaped surface-
breaking cracks in a plate specimen. An area of 20x40 mm
of the specimen represented the analysis model. The
thickness of the plate specimen is 1.27 mm, and the
material parameters are: σ=106 S/m, µr=1. A pancake-type
probe at a constant lift-off of 0.5 mm was simulated for the
scanning. The energizing frequency was 300 kHz. Each
complete scan consisted of 21 probe readings along a
probing line parallel to the crack mouth, in 1mm steps.
Apertures of 5 elements, and estimation windows of 6 mm
opening were taken. From the total of 600 complete, 21-
points scans were formed in this way N = 600 ((21-6+1)) =
9600 such input-output vector pairs. From this maximal
database, validation and verification sub-sets were
extracted prior to any subsequent module of the algorithm,
and used only in the testing phase.

4. Numerical Results

The performance measure of the regression was given by
the average deviation of the reconstructed parameters for
the validation, or verification sets:
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where p and q are the number of scanned flaws contained
in the testing set, and the number of parameters per entire
reconstructed windows, respectively. bj

i, bj
i are the actual,

and estimated output values. For these parameters we
obtained values corresponding to an average per-cell
deviation of less than 6%. However, a `good' average
deviation value did not correspond always to a good
estimation of the parameters defining the flaw peculiarities
and was sometimes just an indication of a higher contrast
between the colors associated to the conductivity value. As
it was chosen to not threshold the outputs, the visual
examination of the reconstructed shapes became equally
important.

The mapping was obtained by training with unjittered
signals. In Fig. 3, four reconstruction examples are
presented in gray-level images. For each estimation, the
correct image is given above. The training was stopped
after about 200 epochs, when a minimal error was obtained
for the selected validation sets.  One can notice that fair

reconstructions are obtained for the multiple successive
cracks and for complex shape and conductivity structures.
Each image represents a 20mm long profile, which is
obtained by a weighted superposition of 16 successive
windows.

In the same setup, the algorithm was tested on signals
containing artificial injected uncorrelated (white) noise,
15% from the signal maximum. The results were not
satisfactory when the map was obtained from noise-free
training sets. When the data jittering technique was
employed and the original signal collection was expanded
two times to contain additional (5% and 15% from the
signal maximum) noise levels, the map became very
robust. Fig. 4 gives some examples, obtained after about
300 training epochs. For each estimation, the correct image
is given above.
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Fig 3. Reconstructions from noise-free data.
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Clearly, regressing a map able to “encode” not only
complex (crack) shapes, but also four conductivity levels
for each composing cell is a difficult task for any
algorithm. If one takes into account the small number of
database’s scans and the high degree of ill-conditioning
that is characterizing this inverse map, a satisfactory
solution to this problem becomes unlikely, even for
sophisticated NN algorithms. Here is where the role of the
whole chain of procedures involved by the proposed
algorithm becomes clear. Common NN auxiliary practices
like data pre-processing, jittering, together with the special
training algorithm employed are becoming decisive
regularization tools for this particular problem. Additional,
application-related procedures, like data fragmentation and
shifting, data fusion and restriction of the class of training
data are not less instrumental for the whole algorithm.
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Fig. 4 Reconstructions from noise-polluted scan data.

5. Conclusions

An NN-based mapping algorithm for the inverse problem
in eddy current testing has been presented. The algorithm
involves a special training procedure chosen as highly
suitable for the problem’s nature, feature-oriented data
processing (PCA), data jittering for coping with noisy
input data, an application-related data fragmentation-

shifting-fusion technique and a newly added generator of
training cases.  The quality of the information contained in
the database for the training set was found to be very
important. A randomly generated database, according to
the imposed patterns of the crack shape and conductivity
was used. The crack shape generator allowed the database
to achieve the necessary quality for coping with a highly
complex inverse mapping, where each crack parameter
(cell) can take four levels of conductivity. Good
reconstruction results were obtained even in the case of
high-level noise. The algorithm's capability of
reconstructing multiply connected and unconnected crack
domains is important, as this encourages the attempts to
tackle the problem of natural cracks. The proposed
mapping algorithm can be easily extended to 3-D
reconstructions from 2-D scans.

References

[1] H.A. Sabbagh and R.G. Lautzenheiser, Inverse
problems in electromagnetic nondestructive evaluation,
Int. J. Appl. Electromagn. Mech., 3, 1993, pp.253-261.
 [2] S.J.Norton and J.R.Bowler, Theory of eddy current
inversion, J. Appl. Phys., 73(2), 1993, pp.501-512.
[3] J.R.Bowler, Inversion of eddy current data to
reconstruct flaws by an optimization process, Int. J. Appl.
Electromagn. Mech., 4, 1994, pp.277-284.
 [4] NDT Abstracts - Neural networks in nondestructive
testing, NDT&E Intern. Vol. 30, 5, 1997, pp.321-334.
 [5] L.Udpa and S.S.Udpa, Eddy current defect
characterization using neural networks, Mater. Eval.,
48(3), 1990, pp.342-347.
 [6] R.Albanese et al., Analysis of metallic tubes with ECT
and neuro-fuzzy processing'', Int. J. Appl. Electromagn.
Mech., 9,1998, pp.325-338.
  [7] F.C.Morabito, An intelligent network for defect
profile reconstruction in eddy current applications, in
Studies in Applied Electromagnetics and Mechanics,
Vol.13, Kose and Sievert, Eds., IOS Press, 1998.
[8] R.C.Popa and K.Miya, A data processing and neural
network approach for the inverse problem in ECT, in
Studies in Applied Electromagnetics and Mechanics,
Vol.14,Albanese et al., Eds., IOS Press, 1998, pp.297-304.
[9] C.L.P.Chen, A Rapid Supervised Learning Neural
Network for Function Interpolation and Approximation,
IEEE Trans Neural Networks, 7, 1996, pp.1220-1230.
 [10] R.C.Popa and K.Miya, Approximate inverse mapping
in ECT, based on aperture shifting and neural network
regression, J. Nondestr. Eval., Vol. 17., No. 4, 1998, pp.
209-221.
[11] R.C.Popa, Optimized crack detection and inversion in
eddy current testing, Ph.D. Thesis, Nuclear Eng. Res. Lab.,
University of Tokyo,1998.


