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agents with n, = 32, on networks containing 4. 6. 8 hosts, the average numbers of
MGA generations required to solve the problem are 8.3, 7.4, 6.6. respectively. We
observe that increasing the meta population size. the solving tinte is reduced.

6. Conclusions

In the paper is demonstrated the capability of the distributed evolutionary algo-
rithms to solve the inverse ENDE problems and to reconstruct the flaws in an effective
and accurate manner.

Additionally to the pre-tuning, an original hierarchical structure is proposed fo
realise self-adaptive evolutionary parameter control. The lower level of the software
system contains “slave” evolutionary agents. structured as in the “island model” with
ring communication topology. The upper level is a supervisor evolutionary agent which
acts as ap meta-algorithm, aiming to improve the behaviour of the EAs population. The
Java mobile agent (aglet) technology used to develop the distributed software system
proved to be a very eflective technique to parallelise portable tasks.
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Abstract. The present paper studies the application of an NDT technique using
static field for detecting defects in ferromagnetic materials. Both direct simulation of
nonlinear magnetic field phenomena using a FEM-BEM code and Neural Networks-
based inversion techniques are performed. Numerical resuhs for the inversion of
signals due to otter defects are shown.

1. Introduction

Eddy current testing (ECT) has been extensively used for the inspection of steam
generator (SG) tubing of pressurized water nuclear reactors (PWR). Although ECT offers
wajor advantages with regard 1o high speed and reliability to in-service inspection, its
applicability is limited by skin effect only to thin, non-magnetic structural components. The
detection and characterization of defect through inverse procedures in structural steels,
including ferromagnetic materials, thick structures and welded parts raised recently the
necessity of developing new techniques such as the nonlincar static field analysis. The
increased ill-posedness of inverse problein of reconstruction from signals coming from
static field is a major drawback of this method, although the choice of the numerical
formulation ensure a good performance in terms of rapidity of the forward solver.

2. Direct problem analysis for crack detection

The simulation tocl for the forward problem numerical computations involved in
this paper is a 3-D code, based on a FEM-BEM formulation for magnetic vector potential
A. From Maxwell equations in the limits of magnetostatic field, taking into account the
nenlinear constitutive relationship:

H=FB). (1)
and using the Coulomb gauge div A=0, the governing equations are obtained:
~ L AA=VxM ngQ,, @)

Hy
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~Laa=g, g, (3)
Hy

where Q = Q U Qg is an unbounded domain, 3¢ is the ferromagnetic domain and §2q is the
air. The sources of magnetic field are the impressed current sources Jo in the air and the
magnelization M inside the ferromagnetic bodies. The nonlinear media having the
constitutive relationship (1) are replaced by a linear one having vacuum permeability and a
magnetization iteratively corrccted through a fixed point procedure based on Hantila’s
polarization method [1] [2]. Relation (1) is replaced by:

B=yu,(H+M), 1G]
where the nonlinearity is hidden in the polarization term [icM:
= U/ o B-F(B)=G(B). (5)

On the interface between the FEM-domain (magnetic material) and BEM-domain (air) the
tangential component of H is continuous only in a weak sense [3]:

1 dA
2 =Lai‘ ®)
rw Mo dn BEM

- —-Mx
3. Numerical formulation for FEM-BEM coupling

Hy o

For the ferromagnetic domain Qp, a FEM formulation is developed. Using Galerkin
approach:

A=Z’11NI.A}.' ')

equation (2} is discretized by projecting each term of the equations on the shape functions
and integrating over the entire problem domain €. For the term in the left hand side of
equation (2} we have:

A,
I—I—AAdeQ=I N LN, v 4, -
ot rtt on a Mo A
M, ldn) ALY ®)
(I—N N er 9A,, /3n —Z[J’—l—VN,‘ -VdeQJ A
o 3, 1on) TNk A
& kS

with 9Q being the external surface of domain €. For the term in the right hand side of
equation (2} we use a similar technique:

[(VxMN,dQ =~ [(MxnW,dl'+ [(VN, xMuQ, 9
Q o0 Q
The surface and volume integral from equation (9) can be written in the following
way:

(M xnl

J(Mxn)V,dr= 3 [NeNjar | () xn)
¥ (10

¢ 7=1 90

(Mj xnll
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with i. j. k being the versors of Cartesian system of coordinates and uy an hexahedral
element of the mesh, The equation system obtained is:
N0 0[A] (£ [fe
0 N O0RA =1 7ty u - (12)
o o Mila] {£] U
or, after assembling the system matrix for FEM:
PRab={r}+{fu}. (3
with { £} =[D}{BA/0on}+[ DN, {Mxn} where [D] is the distribution matrix.
Here, elements of [P] and [D] matrices are:

Ny, = ILVN,( VN, dQ, Dy = [LN,(der, k=lnj=Ln, (14)
QJHU rﬂU
with 7 being the number of nodes in the FEM domain.

For the air domain £}, the boundary element method (BEM) is used. Multiplying
the equation (3) corresponding to the air domain (without magnetization source term), with
the elementary solution u* = 1/ 4nr of the Laplace equation and integrating it over the
whole free space, as in {6], we obtain, after several operations [6]. the discrete system
cquations of BEM:

H. 0 o]a G, 0 0][3a,/3n| [F
0 H, 0[Aa+ 0 G, 034 /n =3F, 1. (15)
6 0 H.{|A 0 0 G o4 /on] |F,
or.
(YA} +|GloA/ on}=1{F,}. (i6)
Multiplying with [G]'[D] the last equation, it becomes:
IDIGY " |H A} = -1 DHoA/ an} + {DUGT 'L F, ). (7
The matrix equations (13) and (17) are coupled using the relation (6):
[P+ KHA)}=DIG] " 1F,} +[S1M} (18)
_ 0 S5, 5y
with:  [K]=1/20K,1+1K,1"). (K, J=[PUGI'[H] and [S)=|S, © S,/
Sy S 0
where:
_[VN (-K)dQ =-S5, , = IVN (-i}Q =-S5, ., IVN (a2 =

m}

The nonlinear equation is sclved through a fixed-point procedure described below.
The algorithm of the method is as follows:
1) We start with initial condition for magnetic ficld B® = 0 and sources J"=0 and an
arbitrary value for M";
2) Nonlinear iteration step i = | is performed (then i incremented) ;
3) From solution of system (18), the magnetic flux density inside each clement is
compuied at ieration
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4) The error in comparison with the exact solution in terms of magnetic flux density
B* for the current iteration i is evaluate using the norm described in [1):

if the error is less than an imposed value, we exit the nonlinear iteration cycle.
otherwise we follow the nonﬁnear_ilﬁratic?ns (jump to 2); _
System (18), having the coefficient matrix partially banded and symmetric, is solved using
the active column solver hased on Gauss elimination method [6].

Y ST'E"MUM*‘HV. with @ being the contraction factor defined as in [2;
VST

4. Sensitivity analysis

We used the FEM-BEM code described m the .previoutc, section to simulate the static
field problem of a yoke with sample. Thf: yo}(e is equipped w1th_ two exciting coils and it is
used o magnetize the sample. The region in lhp wgided_spccuncn affected by heating is
modeled as a ferromagnetic part. because ferrite inclusions are present there. For our
problem, we only consider a reduced zone for modcling the specimen. The specimen
thickness is 25 mm. The specimen contains a Cf't}'?k‘ ranged within 3 to 9 mm length, 20%
to 80 % depth and having 0.5 mm width. In Elg. | are shown the overall dimensions of
used in this simulation. Figure 2 shows (u} the nonlincar magnetic
characteristic of the yoke and (b) the nonlinear characteristic for spectmen material. The
exciting coils are cylindrical with Rypge = L1 10M, Koo = 46 mm, H = 35 mm, each of them
carrying {,,; = 2000 AT and being placed on the two columns of the yoke.

yoke and specimen

B0

OO0 /
e ————— -
5 Q4000
=
2000
3%
— ot ]
/- 0 001 002 003 004 DO5S 0.06
15 H [Oe])
a
15
50 15 15 800 -
yoke
T/ “
i crack =
£ -
/!E/ ; 5‘400
i ¥
25 200
aQ b
P v o
A spechmen [ S
e 0 10 20 N 0 0 6
L H[Oe]
b

Fig. 2 B-H characteristic for: {a) yoke and

Fig. 1 The simulated experimental device, with
(b) the specimen material

yoke and specimen dimensions {given it mm}
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The x-component of magnetic tlux density along 4 line in y-direction, centered, with
constant  tiftoff was computed in 21 equally spaced points | mm apart. In the real
experiment, Hall sensors must be used for measuring the field, which is largely over 1 G,
i.e. TFG sensors did not represent a valid option to be used. The difference field. comparing
with the case without crack, is computed.

The difference signal is defined as difference between signal in the case of specimen
with crack and the signal in the case without crack. Figure 3, a) shows the variation of the
difference signal AB,, with the crack depth for cuter defects (OD} 0.5 mm width, 7 mm
length, 20 %, 40 %, 60 % and 80 % depth. In Fig. 3. b, the dependence of the difference
signal AB, on the crack length for 2 0.5 mm width, 40 % OD crack is shown. In Figure 4, a,
the variation of the difference signal AB, with the crack depth for an 0.5 mm width, 7 mm
length, ID crack is shown. Results for 20 %. 40 %, 60 % are presented. In Figure 4, b, the
dependence of the difference signal AB, on the crack length for a 0.5 mm width, 40 % 1D
crack is shown.
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Fig.3 Difference signal AB, variation for an 0.5 mm width, OD crack a) with the crack depth for a 7 mm
length crack; b) with the crack length for a 40 % depth crack.
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Fig.4 Difference signal AB, variation for an 0.5 mm widih, 1D crack a) with the crack depth for a 7 mm
length crack; b) with the crack length for a 40 % depth crack.
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Fig.3 Difference signal AB, variation with specimen thickness for an 40 % depth, 0.5 mm width, 7 mm length
crack a} for an OD crack; b) for an 1D crack; values for 25, 30, 35, 40 and 45 mm thickness of the specimen.

Fig. 5 shows the difference signal variation with specimen thickness, for values of
thickness ranged between 25 and 45 mm, both for OD and ID cracks.

From this plots we can see that even for 209% QD cracks, 3 mm length, the
difference signal still can be emphasized. In the next section we explain about the strategy
used for reconstructing from this signals the crack parameters.

5. Inverse mapping of the scanned magnetic flux density values

. The RrOposed reconstruction algorithm is based on a statistical regression of the
mverse mapping signal to defect parameters. A multi-level-resolution representation of the
input-output relationship was introduced. This is reatized by the combination of two
modules: the statistical analysis and transformation of the input data - by Principal
Component Analysis (PCA) -, and the NN with incrememntal-resolution learning [5}(7). The
ﬁrfst'modu]e discovers the principal directions {features) of data variances and rotates the
original coordinate axcs along these directions, eliminating the multicolinearities of the data
set. As for the second module, the network contains a single hidden layer, and additional
dlrfec‘t connections between inputs and outputs to account for the mapping linearities. The
training starts with only one hidden node, and for each training epoch a new node is
created, the new input-hidden connections receive random weights and the rest of the

weights are _solved by a least-square minimization using singular value decomposition. The
over-determined equation system is:

(A ﬂ(A~W.ﬁ)]-{w'”]—fz'(BJ. (19
whv

whel:e A, B represent the input. and output training sets, respectively the i and f;, the
nonlinear activation functions for the hidden and output nodes, Wi is a randomly
gcncratefi. fixed coefficient matrix and W, W, are the matrices containing the unknowns
i.e. the input-output and the hidden-output interconnections weights, respectively, Threc'
scts of data are used, for training. validation and verification. The validation set is used only
to control the training optimality, by monitoring the currently achicved estimation error.
The verification set is used only in reconstruction and, if available, the commesponding ‘true”

defect shapes are compared with the estimated ones. At this stage, the previously recorded
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files are employed and only elementary operations are required for data transformation and
propagation through the trained network, Therefore, this procedure is very fast, allowing a
real-time implementation with small computational demands during the actual testing.
Being based on the learning an input-output mapping from a set of examples (the training
st} or fitting in a least-squares sense a hypersurface of this set in view of acquiring good
generalization properties in unpopulated points, the overall procedurc is equivalent o &
statistical regression. As the training set covers only a small part of the parameter space, the
generality of the training set is obtained by random generation of the crack parameters.

The defect is represented using a cell parameterization, to each cell, having -1 or |
value, corresponding a material or crack sub-domain. The signals are associated with the
input nodes and defect parameters with the output nodes of the neural network.

6. Reconstruction of crack shape

Crack reconstruction from simulated signals is furthermore investigated. A database
containing 200 cases in the training set, 30 in the validation set and 20 in the verification
get, was computed. Only OD cracks, 0.5 mm width, 20% to 80 % depth, with irregular,
randomly gencrated, open profile were used for training. All cracks were modeled inside a
9 x 5 cells box each with Imm x 0.5 mm x 5 mm dimensions, centered under the scan line.
The number of scan points is 21 and only the x-component of magnetic field along the y-
axis oriented scan line is used. Therefore, the number of output nodes is 45, the number of
input nodes is equal to 21. For testing the effectiveness of this procedure also in the case of
noise polluted data, the data sets were also polluted with 10% and 20% artificial white
noise: The two levels of artificial noise were injected equally in the verification set and in
the training set. Therefore, three different results are available. The first set, reconstructions
after training with noise-free simulated data from noise-free signals (see Fig.6, b). The
second set, after traming with additional 200 cases, 10% polluted, reconstructions from
signals polluted with 10 % noise (see Fig. 6, c). The third set, after training with additional
400 cases, 200 poliuted with 10% white noise and another 200 polluted with 20 % white
noise, reconstructions from signals polluted with 20 % noise (see Fig.6, d). Average
deviations error is bellow 10 %. Training is stopped after an average value of 250 epochs.
The added noise in the training set is used traditionally in NN community for avoiding the
overfitting. In our case, this also allows the network to learn from noise-polluted signals.
Although the validation error has large values, the learning evolve toward very small values
of learning errors and some good reconstructions are obtained (see in Fig. 6,a, comparison
with true profile of the crack).

7. Conclusions

The work emphasized in this material contributes to two aspects of the research
concerning nondestructive testing techniques with static fields. First, a 3D code for
nonlingar static field was developed. The sensitivity analysis shows a good resolution of
signal even for small cracks. Second, the reconstruction using an auto-adaptive Neural
Network training algorithm give good approximation of crack parameters, even for a
reduced training set. The use of a PCA module, before presenting the data to the network,
eliminates the multicoliniarities in the data set, reduces the ill-posedness of the inverse
mapping to be reconstructed, representing thus a regularization factor. Increased quality of
the reconstruction is possible using additional regularization methods.
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a b c d
Fig. 6 (T'umparisun between ) true shape of cracks: and reconstructed results for b) noise-tree signals data
after training with noise-free database: ¢) 10% polluted signals after training with additional lruining set noise
polluted with 10%: white noise; d) 20% polluted signals afier truining with additional training set nokse-
polluted with 10% white noise and 200% white noise. Basic dala sets were 200 for traiving, 30 for validation
and 20 for verification sets. Average deviations error ts below 1€ %,
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A Multilayer Perceptron Approach to a
Non-Destructive Test Problem
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Abstract. The aim of this paper is to present a neural-network
based solution to a non-destructive test problem, namely the
identification of the diameter of a cylindrical defect, on a
metallic slab, by means of multi-layer perceptron based
modeling of the complex interaction between the metallic slab
and the electromagnetic probe. We propose 10 train a network by
means of a consistent data-set obtained by real-world
(measured) data, labeled with the defect diameters, and to
successively apply the leamt network to the estimation of the
dimension of a set of unknown defects.

1. Introduction

Optimization techniques are frequently applied to the most important processes in
the industry, obtaining greater economical benefits by improving quality and
increasing productivity. The basis for success of these techniques is the availability
of the system model. However, it is often difficult to obtain an accurate
representation, due to the inherent non-linearity, complexity and uncertainty of the
industrial processes.

Unlike the traditional mathematical identification approaches, neural network
based modeling enables us to generate a reasonable model without demanding a
detailed knowledge about the physical relationships of the underlying phenomena
{(as demonstrated, for instance, by Homik and Stinchcombe, Haykin, and Fiori
[11,12,13]). This reduces the complexity of the modeling task. In fact, artificial
neural networks are known to perform universal function approximation, provided
that the right network topology is chosen and a sufficiently large set of examples of
the function to be approximated is available (for a modern review see Haykin and
Bishop [3,12]). Such ability may be advantageously employed in those practical
applications where the exact model of a physical system is too difficult to derive or
to handle with, and an amount of measures intrinsically describing the behavior of
such a system are available; in this case neural networks provide a black-box data-
based model of the observable part of the system.

Artificial neural networks have recently found widespread applications in diverse
areas as a practical tool for modeling, simulation, control, and prediction. Especially
prevalent in the applications arc the multi-layer perceptron (MLP) networks, which
are typically trained with data or patterns collected during actual operations, after a

75



	ENDE2000_p15.bmp
	ENDE2000_p16.bmp
	ENDE2000_p17.bmp
	ENDE2000_p18.bmp
	ENDE2000_p19.bmp

