
Some mathematical considerations 

 

This paragraph reviews some concepts and mathematical relationships 
absolutely indispensably for a substantial approach of the electromagnetic field 
theory. These are going to be briefly presented, assuming they are also known form 
previously studied disciplines (algebra, vector analysis, differential and integral 
computation, special mathematics). 

 

● Three-orthogonal coordinate systems  

A three-orthogonal coordinate system is a reference system defined by three 
surface families (marked in a well-defined order by the scalar quantities 1u , 2u  
and 3u  called coordinated) which intersect orthogonally. Next, we recall the 

expressions for the line elements 1dl , 2dl  and 3dl  (their unit tangents being 1e , 2e  
and 3e ), area elements 321 dsdsdA  , 132 dsdsdA   and 213 dsdsdA   and 
volume elements 321 dsdsdsdv   corresponding to the Cartesian, cylindrical and 
spherical coordinate systems.  

For Cartesian coordinate system: 

xu 1 , yu 2 , zu 3 , iee x 1 , jee y 2 , kee z 3 ,  

dxdl 1 , dydl 2 , dzdl 3 , 

dzdydA 1 , dxdzdA 2 , dydxdA 3 , dzdydxdv  . 

For cylindrical coordinate system: 

zu 1 , ru 2 , 3u , zee 1 , ree 2 , ee 3 , 

dzdl 1 , drdl 2 , drdl 3 , 

ddrrdA 1 , ddzrdA 2 , drdzdA 3 , ddrdzrdv  . 

 

For spherical coordinate system: 



ru 1 , 2u , 3u , ree 1 , ee 2 , ee 3 ,   

 ddrdA  sin2
1 ,  ddrrdA  sin2 , ddrrdA 3 ,   

 dddrrdv  sin2 . 

 

● Dot (scalar) product, cross (vector) product 

  

Let two vectors, denoted a  and b , having the absolute value a  and 
respectively, b , which define the surface   , and let be   the angle between a  

and b , with  .rad   

 By dot product of vectors a  and b  one understands the vector 

cos baba . 

 By cross product of vectors a  and b  one understands the vector 

  nbaba  sin , 

having the absolute value sinba ,  the unit vector n  being perpendicular on 
the surface    and having the orientation given by the corkscrew rule 

(corresponding to the rotation in this plane of vector a  in order to superpose it over 
vector b  following the shortest path). 

 The following properties are underlined abba   and  abba  . 

 

 ● A few definitions related to vector fields  

  

Let a vector field vm . A field line of this vector field is an oriented spatial 
curve, having the property that, in any of its points, the vector  

332211 emememm vvvv   



is tangent to it and it is oriented the same way the curve is (see                    Figure 
1.2.1). 1vm , 2vm  and   3vm  are the scalar components of the vector vm . 

 

 

 

 

 

 

 

Figure 1.2.1 

The field line spectrum is a field line assembly from a certain area in the 
space. The flux tube is a tubular surface defined by the totality of the field lines 
which pass through all the points belonging to a small closed contour (see the 
hachured area from Figure 1.2.1). 

 ● Integrals 

 Line integral of a vector field 

 Let consider a vector field vm  and an open space curve  C  arbitrary 

oriented by the unit tangent vector t . One realizes a discretization of the curve 
domain  C  in elementary line sub-domains (centered respectively on points kP  

where the vector field has the value kvm , ) of lengths kl  and there are defined the 

elementary vectors  kl  using the relation tll kk   (see Figure 1.2.2).  
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Figure 1.2.2 
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called the line integral of the vector field vm  along the oriented curve  C . With 

tgvm
~

,  was denoted the average value of the scalar tangential component of the 

vector field vm  along the curve  C , and  CLg  is the length of             curve  C . 

Surface integral of a vector field 

 Let consider a vector field vm  and an open surface  S  arbitrary oriented by 

the normal unit vector n . One realizes a discretization of the surface domain  S  in 
elementary sub-domains (centered respectively on points kP , where the vector 

field has the value kvm , ) of areas kA  and there are defined the elementary 

vectors kA  by relation nAA kk   (see Figure 1.2.2). One computes the 
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n ). 
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Figure 1.2.3 
 

 

If this limit exists, then  
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is called the surface integral of the vector field vm  along oriented surface  S . 

With 
nmvm

~

,  was denoted the average value of the scalar normal component of the 

vector field vm  along the surface  S , and  SAria  is the aria of the     surface  S . 

    Volume integral of a scalar field 

 Let consider a scalar field sm  and  a volume domain  V . One realizes a 
discretization of the volume domain  V  in elementary sub-domains (centered 
respectively on points kP , where the vector field has the value ksm , ), of volumes 

kv  (see Figure 1.2.4). One computes the sum k
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Figure 1.2.4 

 

is called the volume integral of the scalar field sm  on domain  V . With 
~

sm  was 
denoted the mean value of the scalar field sm on volume  VVol . 

 Remarks        

 1. In order to define the integrals using line vectors and surface vectors 
associated to some closed curves   , respectively to some closed surfaces   , the 
computation is similar to the one presented above for open curves and, 
respectively, for open surfaces. 

 2. Whenever we deal with a closed surface   , by convention we choose 

the orientation of the normal unit vector n  towards the exterior of that 
surface. 

 3. The results of the integrals presented above are scalars affected by sign, 
which represent some global quantities associated to line, surface and volume 
domains, quantities which give information about the average behavior of the 
integrands-local quantities on the domains on which these integrals were 
computed. 

 4. In time-varying state the integrands are local quantities depending on  
point and time, while the integrals are global quantities which depend only on time. 

5. The orientation of a curve by optional choice of the sense for the unit 
vector t , respectively the orientation of  a surface by optional choice of the sense 
of the unit vector n , represents the choice of a reference sense for the line integral 
computation, respectively for the surface integral computation. The significance of 
the sign of the integral is that the real sense of the global quantity coincides (if the 
integral is positive) or does not coincide (if the integral is negative) with the 
reference sense arbitrary chosen for the orientation of the line element vector l , 

respectively area element  vector A . 



 6. For numerical computation, the integrals are being approximated by the 
sums from which they are derived, and the finer the discretization is, the closer the 
results are to the exact solutions. 

 ● Space differential operators 

  The differential operators represent extremely important mathematical 
instruments when characterizing the local behavior of scalar and vector fields.  

 

 

From these, only six are going to be presented, three of them referring to 
continuity domains and three to discontinuity surfaces. 

 The divergence is a differential operator applicable to vectors and it has as 
a result a scalar. 

 The curl is a differential operator applicable to vectors and it has as a result 
a vector. 

 The gradient is a differential operator applicable to scalars and it has as a 
result a vector. 

 We present the expressions of these operators for continuity domains, in 
Cartesian coordinates. If  
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 There are a lot of field problems referring to discontinuity domains.  

 

Let a surface which separates two media with different properties (denoted 
by (1) and (2) in Figure 1.2.5), and let 12n  be its normal unit vector in the point in 
which 

 

Figure 1.2.5 

we wish to use the differential operators (oriented from medium (1) towards 

medium (2)) and let 
 1
vm and 

 2
vm , respectively  1

sm  and  2
sm , the values of the 

local quantities vm  and, respectively, sm  in the nearby neighborhood of the 
separation surface between the two media. One defines the following surface 
operators:  

▫ the surface divergence   
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▫ the surface curl   
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12
12 vvvs mmnm curl , 

▫ the surface gradient  

    12
12 ssss mmnmgrad  . 

Remarks 

1. To zero divergence vector fields correspond closed field lines. 

2. To zero curl vectors fields correspond open field lines. 

 

 

 

● Integral relationships  

   Gauss – Ostrogradski relationships expresses the flux of a vector field vm  
through an open surface    by a volume integral of the divergence of the field  

vm  on domain  V  bounded by the closed surface   : 

 
 

 
dvmdivdAm

V

vv 


  . 

Stokes relationships expression expresses the circulation of a vector field  

vm  along a closed curve    by a surface integral of the curl of the field vm  on an 
open surface  S  bounded by the closed curve   : 
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● Time derivative of a space integral 



As we know, the time evolution of a physical quantity is expressed from 
mathematical point of view by its time derivative. The problem becomes more 
complicated if we want to study the time evolution of a global quantity (expressed 
by an integral) if we deal with moving bodies, when the global quantity varies in 
time both due to the time integrand variation (in the present case a vector field vm  
or a scalar one sm ), and because of the time evolution of the integration domain. In 
this situation the integration domains are driven by moving bodies and the time 
derivatives of the space and volume integrals are computed using the relations: 
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where w  is the local speed vector. 

 


